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Simple cases of the streamline-curvature instability 
in three-dimensional boundary layers 

By NOBUTAKE ITOH 
National Aerospace Laboratory, Chofu, Tokyo, Japan 

(Received 4 July 1995 and in revised form 6 November 1995) 

A new instability of the centrifugal type due to the curvature of external streamlines 
was theoretically predicted in a recent study on boundary layers along a swept wing. 
It is, however, not clear how this instability relates to already-known instability 
phenomena in various three-dimensional flows. So the basic idea developed in the 
analysis of boundary layers is applied to the simpler problems of the flow on a rotating 
disk and along the leading edge of a yawed circular cylinder, and the resulting 
eigenvalue problems are numerically solved to show multiple stability characteristics of 
the flows. Computational results confirm that the streamline-curvature instability does 
appear in the rotating-disk flow and that it is in fact identical with the instability called 
the ‘parallel’ or ‘type 2’ mode in the atmospheric literature. This instability is also 
found to occur in the steady flow near the attachment line and to give the lowest values 
of the critical Reynolds number except for a very narrow region close to the attachment 
line, where the viscous and cross-flow instabilities are dominant. These facts provide 
evidence to show that the same mode of instability as the classical one observed in 
rotating flows can appear in general three-dimensional boundary layers without 
rotation. 

1. Introduction 
The study of the process of instability and transition to turbulence in boundary 

layers developing on a swept wing is very important in fluid dynamics and aeronautical 
science, because knowledge of those phenomena is indispensable for practical 
application of the methods of transition prediction and the technology of boundary- 
layer control to high-speed aircrafts. Those boundary layers are three-dimensional in 
the sense that streamlines of external inviscid flow are curved in the plane parallel to 
the wall by the different directions of the main stream and pressure gradient, and 
thereby the velocity in the viscous layer has a cross-flow component normal to the 
external flow. Because of this, three-dimensional boundary layers show very 
complicated characteristics even in the initial stage of transition. That is, some different 
kinds of instabilities can appear there and invite much earlier transition to turbulence 
than in two-dimensional boundary layers. It is of particular importance that some of 
those instabilities are inherent in three-dimensional flows and occur in the region near 
the leading edge of a wing, because this may be responsible for the early transition of 
three-dimensional boundary layers. Since our knowledge of the multiple instabilities is 
still insufficient, further studies to clarify detailed properties of each phenomenon are 
necessary for meeting increasing engineering needs. 

In experiments on three-dimensional boundary layers along swept wings, two kinds 
of instabilities have been observed, one being the Tollmien-Schlichting instability 
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commonly seen in two-dimensional flows and the other the cross-flow instability 
induced by the existence of an inflexion point in the twisted velocity distribution. 
Classical instability theory based on the Orr-Sommerfeld equation (Mack 1984; Itoh 
1991) indicates that the cross-flow instability occurs in the front region of negative 
pressure gradient near the leading edge and the Tollmien-Schlichting instability 
governs the rear region of zero or positive pressure gradient. However, a recent study 
by the present author (Itoh 1994b) has predicted theoretically that a new instability due 
to the curvature of external streamlines can occur in three-dimensional boundary 
layers on a swept wing. This instability is likely to appear in the region closer to the 
leading edge than the cross-flow instability. In fact, subsequent studies (Itoh 1995, 1996) 
used a combination of an approximate boundary-layer calculation based on the 
momentum integral equation and a simple method of linear stability calculation 
including the principal effects of wall and streamline curvatures, and determined 
critical Reynolds numbers of the multiple instabilities in the simplest flows on a yawed 
circular and elliptic cylinders. The results show that the flow region along a cylinder is 
divided into three subregions as one moves from the leading edge, governed by 
respectively the streamline-curvature instability, the cross-flow instability and the 
Tollmien-Schlichting instability. 

Another important example of three-dimensional boundary layers is the flow on a 
rotating disk, because it includes the curvature of the flow field and the cross-flow 
component of velocity. Gregory, Stuart & Walker (1955) made both experimental 
observations and a theoretical analysis of the rotating-disk flow and revealed some 
fundamental properties of its instability. Their comparison between theory and 
experiment showed that stationary vortices are produced by an inviscid instability of 
the inflexion-point type caused by the existence of cross-flow. About ten years later, 
another kind of instability was found by Faller & Kaylor (1966) and Lilly (1966) in 
experiments and stability calculations, respectively, of the rotating-disk flow and the 
Ekman boundary layer. This instability occurs even at a much lower Reynold number 
than the critical value of the cross-flow instability and induces travelling waves with 
wavenumbers quite different from the wavenumber region of the cross-flow vortices. 
Recent studies by Balakumar & Malik (1990), Balakumar, Malik & Hall (1991) and 
Faller (1991) gave detailed results of linear stability computations which shed light on 
various aspects of the multiple instabilities in the rotating-disk flow. 

For the situation described above, we have two straight-forward questions on the 
new instability induced by the curvature of external streamlines. One is whether or not 
this instability can occur in rotating flows, where the curvature of the flow field 
becomes infinitely large as the distance from the rotation axis decreases to zero. At 
present, there are no experimental observations of the streamline-curvature instability 
in boundary layers on swept wings, so evidence should be sought for this new 
instability in the rotating-disk flow. This investigation will contribute to the clarification 
of the relation between the instabilities already observed in the rotating flow and the 
new one predicted for general boundary-layer flows without rotation. The second 
question is how the streamline-curvature instability behaves in the flow near the 
attachment line on a swept wing. It should be noted that the previous calculations of 
the new instability excluded the region very close to the leading edge of a wing, because 
of doubt about whether the approximate disturbance equations used were applicable 
to this region. The stability problem of the attachment-line flow near the leading edge 
is, of course, itself very important and has received much attention from investigators, 
because the transition process in downstream boundary-layer flows would be affected 
markedly by instability of this leading flow (see Poll, 1984, 1985 and Reed & Saric 1989 
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for simple reviews). However, in the present circumstances we expect understanding of 
the associated phenomena to be advanced by the new concept of streamline-curvature 
instability. It is of particular practical interest to examine relations between the 
instability phenomena of the attachment-line flow and those of the fully developed 
boundary-layer flow downstream, say, on a yawed circular cylinder. 

The present study, stimulated by the above questions, is a linear analysis to show the 
most important mechanisms and fundamental properties of the multiple instabilities in 
the flows on a rotating disk and along an attachment line, with particular attention to 
the principal effects of the curvature of external streamlines. Two kinds of formulation 
are presented to describe those effects: one is the simplest form directly applicable to 
rotating flows and the other is a modified one for convenience of application to the flow 
on a slender swept wing. Then eigenvalue problems posed by the resulting ordinary 
differential systems are solved numerically to determine local critical Reynolds 
numbers and principal stability characteristics as functions of a parameter char- 
acterizing the basic flow. The numerical results will be compared with those obtained 
for the rotating-disk and boundary-layer flows in the existing studies quoted above, in 
the expectation that we have useful information on the streamline-curvature instability. 
Although rather rough approximations are used in the analysis, the simplicity of the 
formulation is very convenient for clarification of the essential mechanism of the 
phenomena and for seeing the most fundamental properties of the instabilities. 

The next two sections present the simplest form of the disturbance equations for 
describing the streamline-curvature instability and the results of application to the 
rotating-disk flow as well as comparison with existing theories. In 994 and 5 ,  a similar 
but more convenient form of the disturbance equations is derived for the stability 
analysis of the flow on a yawed circular cylinder. On the basis of the numerical results, 
we discuss the main effects of the streamline curvature on critical Reynolds numbers 
and stability characteristics of the attachment-line flow in 9 6. Some concluding 
remarks are presented in the final section. 

2. Model equations describing the streamline-curvature instability 
We start by deriving the simplest form of the disturbance equations that can describe 

the streamline-curvature instability, because it will be helpful in understanding the 
essential mechanism of the new instability. For this purpose, it is convenient to 
consider a three-dimensional laminar boundary layer on a stationary horizontal plane 
under a potential flow whose streamlines have a local radius of curvature r,, and to 
assume that the growth of the boundary-layer thickness can be ignored at least at the 
level of approximation concerned. These conditions are satisfied in the problem of 
rotating-disk flow, which will be discussed in the next section. It is also convenient for 
an explicit representation of the curvature to use the cylindrical polar coordinate 
system with the vertical axis located at the centre of the curvature. Let ( r ,  8, z )  denote 
the coordinates, t time, (uT, vg, u,) velocity components, p* pressure, p density and v 
kinematic viscosity. Attention is here directed to a close vicinity of a reference point 
(ro,8,,0) on the plane, and the boundary-layer thickness is denoted by a constant 6, 
the reference length in the horizontal directions by L, the reference velocity by Q,, and 
the Reynolds number is defined by R = Q,6/v. In addition, we introduce two 
non-dimensional parameters defined by e0 = S/L and K = 6/r,,, where c, is a small 
parameter inversely proportional to the Reynolds number and K denotes dimensionless 
curvature of the external streamline and is also assumed to be very small. Then all other 
quantities are made dimensionless as 
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where negative signs in front of 5, U and u have been introduced to yield the right-hand 
system of coordinates, (u, v, w,p) denote the small disturbance superimposed on the 
basic flow (U ,  V,  W, P) and Re denotes the real part, while 5 and 7 may be assumed to 
be of order c,, because we consider a close vicinity of the reference point. Partial 
derivatives of the phase function O ( < , ~ , T )  define the real wavenumbers in the 5- and 
7-directions and the complex frequency as 

respectively, where non-dimensionalization has been made with the boundary-layer 
thickness 6 because of scaling the exponent with eo. Substituting the above into the 
continuity and Navier-Stokes equations written in cylindrical coordinates, subtracting 
the basic-flow parts, which are assumed to satisfy the equations of motion by 
themselves, and neglecting coupling terms of the small disturbance, we have linear 
disturbance equations of the form 

(2.3 a) 

1 e ,au  K 

h a t  h 
[ f ( v 2  - $) + iw - s (ia + e, 6) - V (  ip + e, i) - e, WD - -- - - v u 

[f ( v-$) + iw -;( ia: + e, $) - V (  ip+ e, 6) - eo WD - e, 

1 -eo W D - ~ ~ D W  w 

where h = 1 + K(T/c , )  may be assumed to be 1 + O(K) and the differential operators are 
defined by D = a/aC and 

V2 = D2 + 4 h (ia + eo $r + (ip+ eo $r + 5 (ip+ e, g) . 
Since the main purpose of the present study is to clarify the most important effects 

of the streamline curvature on the instability of a three-dimensional flow, we wish to 
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reduce the above partial differential equations to an ordinary differential system, which 
poses an eigenvalue problem commonly applicable to the different types of instability 
mentioned earlier and enables us to make a simple estimation of the stability 
characteristics of a given flow. In practice, we follow the basic idea of the previous 
work (Itoh 1994b) and construct a model system by retaining only the most important 
terms in the original equations. If the magnitude of the principal inviscid terms 
w-a:U-pV is denoted by a non-dimensional parameter e, then e is of order unity for 
the two-dimensional Tollmien-Schlichting waves but is zero for the neutrally stable 
state of Taylor-Gortler vortices in two-dimensional flows, because the former have the 
wavenumber vector parallel to the basic flow but the wavenumber vector of the latter 
is perpendicular to the basic flow. In three-dimensional boundary layers with small 
cross-flows, e takes non-zero values in the range from order unity to order much 
smaller than unity according to the type of disturbances; in particular for the 
disturbance whose wavenumber vector is perpendicular to the external stream, this 
parameter is considered to represent the magnitude of the cross-flow V, which may be 
taken to be smaller than unity but larger than e,, for general boundary layers. On the 
other hand, it is obvious from the classical theory of linear stability that the viscous 
terms K1(D2 - a2 - p2) become so large as to balance with the principal inviscid terms 
of O(e) in the critical and wall layers and play an important role at least in the viscous 
Tollmien-Schlichting instability of boundary-layer flows, although R-' is itself of 
O(e,). Furthermore, an order analysis gives rise to the fact that the principal curvature 
term is given only by 2 ~ U u  in ( 2 . 3 ~ )  and becomes important in the equations for 
e = K ' / ~ ,  showing a striking similarity to the corresponding wall-curvature term in the 
Taylor-Gortler instability. To incorporate the principal inviscid, viscous and curvature 
terms discussed in a plausible and plain formulation, we introduce the orders of 
magnitude as 

(2.4) I 1 > € > K ' / 2 > € , ,  u ,u ,p -O( I ) ,  

V , V ,  W, a:, w ,  R-' - O(e), p - O(e2), 

where R-' represents only the coefficients of the viscous terms in (2.3), being 
distinguished from the other terms of O(eJ. Then the magnitude of all terms in (2.3) is 
evaluated to derive the lowest-order approximations to the exact equations for 
different magnitudes of E .  This analysis shows that the largest curvature term 2 ~ U u  
remains in the lowest-order approximation for e = K ' ' ~  but that for larger values of E 

all curvature terms become negligible and the leading-order equations for 1 > E > K ~ / ~  

are the same as those for E = K'" on dropping the curvature term. It is also found that 
we have the parallel-flow approximation equivalent to the Orr-Sommerfeld equation 
in another limit, e = 1. Therefore, superposition of the results for the two limiting cases 
gives rise to model equations applicable to the whole range of 1 2 e 2 dI2. The 
resultant equations are : 

iolu+ipv+Dw = 0, (2.5a) 

[ ~ ( D z - a 2 - ~ 2 ) + i ( w - ~ U - ~ V )  1 u- U'w-iup = 0, 

[i (D2 - ct2 -p2) + i(o - aU-pV) v - V'w + 2 ~ U u  -ipp = 0, I 
[ f (D2 - a2 - p2) + i(w - a: U -  pV)  w - Dp = 0, 1 

(2.5b) 

(2.5 c)  

(2.5d) 
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where the prime denotes differentiation with respect to 6. These equations are slightly 
different from and simpler than those previously obtained for boundary layers on a 
swept wing, because the growth of the boundary-layer thickness has been ignored here 
on the grounds of a constant thickness of the rotating-disk flow. 

We have thus obtained a very simple ordinary-differential model of the original 
disturbance equations, but it is more convenient for numerical solution of the problem 
to eliminate v and p from the above equations on the assumption of /3 being not zero. 
This yields simultaneous equations for u and w of the form 

[ (a’ +p2) { f (D’ - a2 -p2) + i(o- aU-pV) - 2@KU u I 1  
- ia -(D2-a2-/32)+i(o-aU-pV) D+P(PU’-aV’> w = 0, ( 2 . 6 ~ )  [ {L I 1 

[ { f (D2 - a2 -p2) + i(o - a U -  p V )  (D2 - a2 -p2) + i(aU” + PV”) w 1 
- 2iP4 UD + U’) u = 0. (2.6 b) 

This form of the equations presents the simplest modification of the parallel-flow 
approximation and reduces to a three-dimensional version of the Orr-Sommerfeld 
equation if we put K = 0, and its simplicity is suitable for our purpose of extracting the 
pure effects of the streamline curvature from the complex effects of various factors 
appearing in the exact disturbance equations. The above equations are accompanied 
by the boundary conditions that disturbance velocities vanish on the wall and away 
from the wall, but it is again convenient for numerical solution to replace the outer 
conditions with the equivalent matching conditions imposed at an appropriate 
boundary-layer edge 6. Outside the edge, U and V may be replaced with constant 
values U,, and V,, respectively, and the disturbance equations (2.6) reduce to the simpler 
ones including constant coefficients only. Then the usual procedure derives the 
conditions for the solution to decay far away from the wall, which may be written in 
the form of three differential relations to be satisfied by the outer solution everywhere 
in the outer field and at the same time by the inner solution at the boundary-layer edge. 
After some simplification based on the same level of approximation as before, we have 
the boundary conditions of the form 

u = w = w ‘ = O  at C = O ,  ( 2 . 7 ~ )  

I 

la 
u’+pl u + (w”+2p1w’+p;w) = 0, 

P2(P1 - P A  

u = 0, w”+ (P,  +P2) w’ +P1 P2 w+- 
P1+ P2 

iPRK u, 

(2.7b) 

( 2 . 7 ~ )  

w”’ + (2p1 + pz)  w” + pl( p1 + 2p2) w’ + ,o: p2 w = 0 at 6 = 6, (2.7d) 

where p1 = (a2+p2- i~R+iaRUO+iPRV,) ’ /2  and p2 = (a2+P2)ll2. 

The homogeneous set of the equations and boundary conditions given above 
constitutes an eigenvalue problem to determine the complex quantity w as a function 
of the wavenumbers a and P, the Reynolds number R and the streamline curvature K 

in the form 

Since the real and imaginary parts of w denote frequency and temporal growth rate of 

o = o(a,/3, R; K) .  (2.8) 
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disturbances, respectively, the condition of neutral stability is given by Im [w] = 0, 
which defines a surface in the three-dimensional space with the coordinates 01, p and 
R. For a given value of K, the critical point (a,, p,, R,) is determined as the point where 
R takes a minimum on the surface and is obtained by solving the simultaneous 
equations 

(2.9) 

where the subscripts 01 and p denote partial differentiations. Computations of the 
eigenvalues and their partial derivatives with respect to 01 and p are made with a 
numerical method developed by the author (Itoh 1974; Watanuki & Itoh 1984). 
Preliminary calculations have been done with various locations of the boundary-layer 
edge to confirm that the dependence of eigensolutions on Q becomes negligible if we 
take a sufficiently large distance 5, = 10 (cf. Itoh 1994a), and this value has been 
adopted in the computation reported here. 

Im [w(a, p, R)1 = Im [w,(a, p, R)1 = Im b&”, p, R)1 = 0, 

3. Application to the flow on a rotating disk 
In this section, the above model of disturbance equations is used to examine whether 

the streamline-curvature instability can occur in a rotating flow. If there is an 
instability that is described by the present system but not by the Orr-Sommerfeld 
equation, then we may consider that the instability is induced by the curvature of flow 
field, because our equation system forms the simplest modification of the Orr- 
Sommerfeld system with addition of a curvature term only. For the basic laminar flow 
on a sufficiently large disk rotating in the counter-clockwise direction with a constant 
angular velocity w,, we have an exact solution of the Navier-Stokes equations : 

v, = rw,F’(Q, v g  = rw,{G(Q+ l}, v, = -2(~w,)’/~F({), (3.1) 

with the solution of the ordinary differential equations 

Prr’+2FF”-(P’)2+(1 +G)’ = 0, G+2PG-2F’ ( l  + G )  = 0, 

F(0) = F(0) = G(0) = 0, F’(.o) = 0, G(.o) = - 1 ,  

where the vertical distance 5 has been made dimensionless with the boundary-layer 
thickness defined by S = ( ~ / w , ) l / ~ .  For this basic flow, the reference length and the 
reference velocity associated with (2.1) are taken as L = r, and Q, = r,  w,, respectively, 
so that the dimensionless curvature of streamlines is related to the Reynolds number 
by K = R-l. In our formulation, however, we regard these two parameters as being 
independent of each other. This defines a kind of false flow as a generalization of 
the real rotating-disk flow and provides information about the main effects of the 
streamline curvature separated from those of the Reynolds number. When the 
simplified disturbance equations (2.6) are applied to this basic flow, it is convenient for 
comparison with other theories to use the coordinate system rotating with the disk. The 
corresponding transformation results in the replacement of U and w with U -  1 and 
0-01 in (2.6); in reality, only the term 2 ~ U u  is replaced with 2 4 U -  1)u  in the 
equations, where the basic flow is given by U = - G(g) and V = F’(5). We should note 
here that this replacement removes the curvature term from the boundary conditions 
(2.7), because the basic-flow part U -  1 vanishes outside the boundary-layer edge, in 
striking contrast with the case of general three-dimensional boundary layers, where the 
outer boundary conditions include the curvature in the same way as in the 
Taylor-Gortler problem. 
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FIGURE 1. Variation of the critical Reynolds number with the streamline curvature  in the false-flow 
problem. (Solid line: the new stability; dashed line : the cross-flow instability; dotted line : the 
condition R = K - ~ . )  

The main aim in this section is to clarify the effects of streamline curvature on the 
instability of the false flow where the curvature is assumed to be independent of the 
local Reynolds number. This assumption gives the great advantage that we have a free 
parameter representing the magnitude of the curvature of flow field and can see 
variations of stability characteristics with this parameter. In computations here, we 
restrict our attention to the critical Reynolds number Rc of given flows, because it is 
the simplest and most useful quantity for evaluation of instability characteristics. 
Variations of R, with the streamline curvature K will provide us with important 
information about instability mechanism in the false flow and, in fact, in the real 
rotating-disk flow. Figure 1 shows the variation of R, with K.  The dotted line denotes 
the relation R = K - ~ ,  on which the solutions give the critical values of the real flow on 
a rotating disk. The dashed line denotes the critical curve of the familiar cross-flow 
(C-F) instability. The point at K = 0 on this curve corresponds to the critical value 
R, = 177 obtained from the Orr-Sommerfeld equation, where the effect of curvature 
is ignored, while the intersection of this curve with the dotted line gives the critical 
Reynolds number R, = 250.1 for the real curved flow. These results show a stabilizing 
effect of the curvature on the C-F instability. On the other hand, the solid line given 
indicates the existence of another instability in this flow, whose K-dependency is very 
different from that of the C-F instability; that is, the critical Reynolds number sharply 
rises towards infinity as K decreases to zero. Extended computations to larger values of 
K also show that this critical curve intersects with line R = K - ~  at a Reynolds number 
much less than 100. From the above study on the false flow, therefore, we may deduce 
that a new instability entirely different from the cross-flow type will appear in the real 
rotating-disk flow at a considerably lower Reynolds number. It should be noted, 
however, that the system of ordinary differential equations given in this paper is an 
approximate one of substantially same level as the parallel-flow approximation and so 
is in principle valid for large Reynolds number, although there is no reliable estimation 
of the lower limit for validity. This suggests that the new critical Reynolds number thus 
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obtained for the real flow may be outside the range of validity in the present 
computation. 

More detailed investigation of the numerical results for the new instability indicates 
that the critical curve approximately satisfies the relation R, - K - ~ ' ' ,  leading to the 
deduction that this instability may be of the centrifugal type. As is well known, the 
stability limit of two-dimensional boundary layers along a concave wall with the 
curvature K ,  is represented by a critical value G, of the Gortler number defined by 
G = K:' R, so that variation of the critical Reynolds number with the wall curvature is 
given by R, = G c / ~ ; ' .  This is of the same form as the present relation between the 
critical Reynolds number and the streamline curvature, as seen above. Since the critical 
Reynolds number increases to infinity as K tends to zero, our new instability may be 
considered to disappear at the limit of no curvature. This is the reason why no 
instability, besides the C-F one, can be obtained from the Orr-Sommerfeld equation 
where the curvature terms are ignored (see Mack 1984; Itoh 1985). It is also very 
important to note that the rotation of flow field, which is inherent in the present 
problem, is not essential to this instability, because the principal curvature term 
appears and plays the same role even in the stability equations for the case of no 
rotation, as seen in (2.5); the same kind of instability has been found to occur in three- 
dimensional boundary layers on a stationary surface (Itoh 1994b). All this seems to tell 
us that this new instability is of the centrifugal type due to the curvature of flow field, 
and therefore we follow the author's previous work and call it the streamline-curvature 
(S-C) instability. 

Having confirmed the appearance of the S-C instability in the false flow, we now turn 
to the problem of the real flow on a rotating disk, whose stability characteristics can 
be extracted from solutions of the generalized problem given above by imposing the 
condition R = K - ~ .  This will provide information to compare with the existing results 
of stability computations on the rotating-disk flow. The eigenrelation (2.8), solved 
subject to the condition of neutral stability, defines a surface in the three-dimensional 
space (a,/3, R), and intersection of this surface with the plane of R = const. gives a 
neutral curve on the wavenumber plane. Computational results for the neutral curves 
are summarized in figure 2, which shows the variation of the wavenumber region of 
growing disturbances with the Reynolds number. For R = 200, which is lower than the 
critical Reynolds number of C-F instability, the curve indicates the wavenumber region 
of growing S-C disturbances. For a larger Reynolds number, the instability region of 
C-F disturbances appears and becomes larger as R increases, while the region of S-C 
disturbances seems to slightly decrease with R. For R = 400 and 600, the two regions 
are connected, resulting in a single neutral curve, although their original contours seem 
to be roughly maintained. In this figure, the small open circles indicate the points of 
stationary disturbances on the neutral curves, and the frequency of non-stationary 
disturbances is positive on the right-hand side of the line linking these points and 
negative on the left. We can see that most growing S-C disturbances have positive 
frequencies. It should also be noted that most of the open circles are on the C-F neutral 
curves but those on the lower branches for the cases of R = 400 and 600 seem to be 
related to the S-C instability. This suggests that the stationary disturbances associated 
with the last two open circles in the range of very small wavenumbers may have quite 
different properties from the well-known stationary C-F disturbances with considerably 
larger wavenumbers. 

For a proper interpretation of our computational results, we may compare the 
qualitative features of the neutral curves given above with those obtained by Lilly 
(1966), Balakumar & Malik (1990) and Faller (1991). In spite of different simplifications 
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FIGURE 2 .  Neutral curves on the wavenumber plane for fixed values of the Reynolds number in 
the real rotating-disk problem. 

of the disturbance equations and different methods of presentation, we can find a close 
resemblance between our new results and the existing ones. First, the neutral curves 
given in figure 2 are very similar to those of Lilly in having two peaks of the growth 
rate in the wavenumber plane, indicating the presence of two kinds of instabilities. The 
present critical Reynolds number 250.1 of C-F instability is not very far from the more 
accurate value 285.3 obtained by Faller (1991), and the limiting slope of the right-hand 
branch, i.e. the portion almost independent of Reynolds numbers, of the S-C neutral 
curves in figure 2 seems to correspond to the critical angle -35.34" reported by 
Balakumar & Malik (1990). Also, the stationary viscous mode investigated by Malik 
(1986) and Hall (1986) is likely to be related to the open circles on the lower left-hand 
branch of the S-C neutral curves in figure 2 (see also Faller 1991). From this close 
correspondence we can draw the somewhat surprising but quite reasonable conclusion 
that the S-C instability found in this paper is identical with that called the 'parallel' or 
'type 2' instability in the above literature. The most important point to be emphasized 
is that the present analysis based on a very simple model of disturbance equations has 
properly described most of the fundamental features of stability characteristics that 
were revealed by studies using more accurate and much more complicated equations. 

4. Attachment-line flow and disturbance equations 
The stability analysis of the rotating-disk flow given in the previous sections has 

confirmed the existence of the streamline-curvature instability, because it is identical 
with the classical instability of rotating flows that is well known in the field of 
atmospheric science and has been observed in several experiments. As predicted in the 
author's previous studies (Itoh 1994b, 1995), this instability can occur even in 
steady boundary layers on swept wings, although no experimental confirmation has yet 
been obtained. Since the theory predicts the appearance of the S-C instability in an 
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FIGURE 3. Flow situation and coordinate system of the attachment-line problem. 

upstream region of the boundary layer on a swept wing, it is of particular interest to 
examine the possibility of multiple instabilities of the three-dimensional flow near the 
leading edge of a wing, as done in the problem of rotating-disk flow. In the remainder 
of this paper, therefore, we tackle the problem of attachment-line flow with the main 
aims of revealing multiple stability characteristics of this basic flow and of their 
relations to those of the downstream boundary layer. 

For simplicity, we consider the flow around a yawed circular cylinder placed in a 
uniform flow of a constant velocity Q,, as shown in figure 3 ,  where A and ro denote 
the sweep angle and radius, respectively, of the cylinder. Let (r,  8, y*) be cylindrical 
polar coordinates, t* time, (vr, vo, vy) velocity components, p* pressure, p density and v 
kinematic viscosity. This coordinate system is different from that used in $2, because 
it is more convenient for simple expression of the flow situation concerned. Then the 
external potential flow in the -&direction along the cylinder surface is given by a 
sinusoidal function of 8, which may be expanded in the power series 

where x* = r0(n - 0). Since our attention here is directed to a narrow region near the 
leading edge, we introduce a lengthscale L denoting the extent of the flow region 
concerned and make the surface distance x* dimensionless as X =  x* /L .  If x* is 
replaced with X and the ratio el = L/r,  is assumed to be small, (4.1) may be 
approximated only by the leading term with neglect of the O(e3 terms. Then the 
velocity components of the external flow in the - 8- and - y*-directions are written in 
the form 

u, = 2 5  u,x, v, = v,, (4.2) 

where U ,  = Q,cosA and V, = Q,sinA. In this region near the leading edge, the 
boundary-layer thickness is defined by 6 = ( ~ x * / U , ) l / ~  and becomes constant, and the 
viscous flow along the surface has the well-known velocity distributions of the form 
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FIGURE 4. Velocity distributions of the attachment-line flow. 

where (u, V ,  W) denote the velocity components in the (- 6, -y*, r )  directions, 
respectively, 5 = ( r  - r J / 6  is the similarity variable and F and G are solutions of the 
ordinary differential equations 

} (4.4) 
P”’ + FF” + 1 - (F’)’ = 0, 4 0 )  = P’(0) = 0, F’(oo) = 1, 

G+FG’ = 0, G(0) = 0, G(oo) = 1. 

This flow is a member of the Falkner-Skan-Cooke family of velocity distributions and 
includes a cross-flow velocity component normal to the external potential flow. If uand 
u are transformed into the streamwise components Us and the cross-flow component 
and non-dimensionalized with the local velocity QE = (Uk  + V;)’’’ of the external 
flow, we have 

where y = VE/UE represents the inclination of external streamlines from the x*-axis. 
Figure 4 gives distributions of F’(C), G(5) and G(C)-F’(C) to show that the cross-flow 
distribution has a point of inflexion, which is known to work well on the instability of 
the flow. The second equation in (4.5) indicates that the magnitude of the cross-flow 
depends on the streamline inclination and becomes very small as y tends to zero or 
infinity. The cross-flow is maximum at y = 1 but even then it is generally small in 
comparison with the streamwise component. Another important property of this flow 
is that the magnitude of the velocity component %in (4.3) becomes large without limit 
as the distance 6 from the wall increases, because the function F(5) approaches 
C-tconst. for larger values of 5. This is a great difference from the case of rotating-disk 
flow, whose velocity component in the vertical direction vanishes far away from the 
wall. 

We now derive the equations governing small disturbances superimposed on the 
above basic flow. Since the present coordinate system and fundamental properties of 
the basic flow are quite different from those given in the previous sections, it may be 
appropriate to begin with an exact expression of the disturbance equations. First, we 
introduce two small parameters defined by K, = 6 / r ,  and eo = 6/L:  the former denotes 
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non-dimensional curvature of the wall and the latter acts as a substitute for 6, through 
the relation 6, = K,/el. We note that there is no explicit parameter denoting the 
curvature of external streamlines, because the coordinate system here is independent of 
the direction of the local flows. Next, all other quantities are made dimensionless with 
a reference velocity Q, and the boundary-layer thickness 6 as 

where (ul, v,, wl,pl) denote the small disturbance superimposed on the basic flow 
(U ,  V, R-l W,  P), R = Q, S / v  being the Reynolds number, and negative signs in front 
of y ,  I/ and u, have been introduced to yield the right-hand system of coordinates. 
If we substitute (4.6) into the Navier-Stokes and continuity equations, subtract the 
basic-flow parts and neglect coupling terms of the small disturbance, then linearized 
disturbance equations are obtained in the form 

+ W - - D U - ~ U  2K a w 1 - - ~ = o ,  1 aP (4.7a) [ Rh2 ax h ] hax 

(4.7b) 

ul-Dp, = 0, ( 4 . 7 ~ )  

(4.7d) 

where h = 1 + K, c, D = a/a< and V2 = D2 + K, h-lD + hP2a2/ax2 + a2/i3y2. 
The above form of the disturbance equations does not include explicit terms for the 

streamline curvature, which may be absorbed into non-parallel terms of the basic 
boundary-layer flow. Our basic flow is a function of X and 5 and its X-dependence 
yields the curvature of the flow field, where X is a large-scale variable defined by 
X = e, x. However, we learn from the formulation given in $2 that the curvature 
appears in the leading terms of the coefficients of u in the simultaneous equation (2.6b), 
which was obtained by eliminating v and p from (2.5). It is therefore appropriate for 
identification of the curvature term to eliminate the pressure p ,  and the spanwise 
velocity component 0, from (4.7). We may then seek a solution of the equations in 
the wavy form 

together with corresponding expressions for v,, w, and pl. Here a and /3 are real and 
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denote wavenumbers in the x- and y-directions and w is complex, the real and 
imaginary parts denoting frequency and temporal growth rate of disturbances, 
respectively. The dependence of u and a on the large-scale variable X comes from that 
of the basic flow. This yields the simultaneous equations for u and w as 

[(a2 +p2) {i (D2 -a2 -p2) + i(w - aU-pV) 

+ iKw 5{.(a2 +p2) u- 2a2(w -au-pV)} + 0 so, -, K, u i : 11 
W 
R (D2 -a2 -p2) + i(w - aU-pV) -- D - c,, D + p(pU’ -  aV’) 

ax +is, 

(4.94 

x (D2 -a2 -p2) + i(aU” +pV”) 

-€,, (w-au-pv) 2a-+- -2a a-+p- i ( :* :;) ( ;; Z) 

+ iK,{(w- aU-pV) (D + 2a25) - (aU’+PV‘) + 2a(UD + U’) 

+ a<U(D2 - a2 - p2) - aCU”} + 0 e0, -, K, w ( : )’I 

+2K,{a(w-aU-pV)-(a2+P2) u)+o (4.9b) 

where the prime denotes differentiation with respect to 5. These equations are of the 
partial differential type with respect to 5 and X, but we expect that an appropriate 
method of order estimation can reduce them to a simple system of ordinary differential 
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equations, which enables us to evaluate the local stability characteristics of the given 
flow with solutions of an eigenvalue problem. The simplification will be given in the 
next section. 

5. Reduction to an eigenvalue problem 
In this section, we examine the balance of the principal terms in the disturbance 

equations (4.9) for different values of sweep angle and different modes of disturbances, 
and then simplify the exact partial-differential equations to an approximate system of 
ordinary differential equations by retaining the most important terms only. Before 
doing this, we see how (4.9) includes effects of the streamline curvature, because there 
is no explicit term corresponding to the curvature term in (2.6). Consider the 
coefficients of u in (4.9b), where the differential terms aU/aX and aU’/aX may be 
replaced with U / X  and U’/X,  respectively, and aV/aX = aV’/aX = 0, because U is 
proportional to X and V is independent of X in this problem. If the relation 
e0/X = ((1 +y2)l’’/R) (Qo/QE)  is used in addition, then the leading terms proportional 
to en can be rewritten as 

2ia(1 +yz) l / z  (2) (UD+ U’) U. (5.1) 2ie0 {(a g+ BE) D + (a  + BE)} u = R 

While the reference velocity Q, is not yet specified, the curvature of the external 
streamlines is obtained from the inclination y and its derivative with respect to X and 
is written in the dimensionless form 

Y Q n  
Ks = R(1 + y z ) z ’  

where the reference length is the boundary-layer thickness 6. It is therefore possible to 
eliminate R from (5.1) by the use of (5.2), resulting in u-terms proportional to the 
curvature K,. If we consider disturbances of the longitudinal-vortex type and transform 
x and y into the coordinates 4 and 7 parallel and perpendicular to the streamlines, we 
find that the corresponding u-terms in (4.9b) can be rewritten approximately in the 
same form as the curvature terms in the previous formulation (2.6). These terms may 
be expected to induce a centrifugal-type streamline-curvature instability even in the 
present problem. 

To simplify the disturbance equations (4.9), we consider the case eo = el = K:’ and 
assume that the cross-flow component of the basic flow has a magnitude of O(ei/2). The 
assumption of small cross-flow may be mathematically justified only if the streamline 
inclination is either very small or very large, such as y z O(e;/’) or y-l - O(#z), but 
here we apply it to all values of y for the physical reason that the cross-flow component 
is generally smaller than the streamwise component, as shown in figure 4. Under these 
conditions, we examine the fundamental balance of various terms in the disturbance 
equations. Let us begin with the case where the sweep angle A of the cylinder is so small 
as to be of O(e,). If we take V, = Q, sin A as the reference velocity Q,, the basic flow 
in dimensionless form has the spanwise component V of O(1) and the streamwise 
component U of the same order, and R-l becomes of O(e,), because substitution of 
6 = ( ~ r , , / 2 U , ) ~ / ~  into the definition of the Reynolds number leads to the general relation 

1 - 2~,Q,cosA 

R Q” 
- - (5.3) 
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If disturbances are of the longitudinal-vortex type, their wavenumber vectors are 
nearly perpendicular to the basic flow, and then a and ,!? are of O(1) but the inner 
product aU+ pV yields a cross-flow component, which is assumed to be of O(eA/2) here. 
Since (r) has the same magnitude as the inner product, we may assume the orders of 
magnitude as 

U, V ,  W,a,p,  u - O(1); aU+pV,w,  w - O(C;’~); R-’ - O(e,), (5.4) 

and then the leading-order approximation of (4.9) is given by 

[i(2 + /Iz) (w - a U -  /? V )  + O(eO)] u + [ - p( PU’ - a V) + O(c~”7)l w = 0, (5.5 a) 

[i(w - aU-  p V )  (D2 - a2 - P2) + i(olU” + PV”) + O(e,)] w 

+ E 0 y ( u D +  u’>+o(s:) u = 0. (5.5b) [ 2ia I 
Next we consider the case of normally large sweep angle, so that U, is much smaller 
than V,. If the reference velocity is again chosen as Q, = V,, the velocity component 
V is of U( 1) but the streamwise component U is of O(e,), and the wavenumbers a and 
/l of the longitudinal disturbances are of O( 1) and of O(eo), respectively. If we apply the 
above method of order estimation to this case, we have 

V, W,CY,U,W - O(1); U,P,w - O(e,); R-’ - O(ei), (5.6) 

and then the lowest-order equations are obtained in the form (5.5) with a few terms 
neglected, indicating that the case of small sweep angle gives the most general form of 
approximate equations. Finally, we consider disturbances that are not of the 
longitudinal-vortex type, so that all of the velocity components and the wavenumbers 
may be assumed to be order unity for the sweep angle of O(co). Then the leading-order 
terms become 

[i(a2 +,!?) (w - a U - p V )  + O(s,)] u 

+ [U(W - U -  /3 V )  D - P( PU’ - CL V’) + O(cO)] w = 0, (5.7 a) 

[i(w - CY U -  /3 V )  (D2 - a’ - /3’) + i(a U” + /3 V”) + O(cO)] w + [O(cO)] u = 0, (5.7 b) 

for small sweep angle, but the terms proportional to U in (5.7) are absorbed into the 
smaller-order terms for large sweep angle. 

As seen above, the leading-order terms in the disturbance equations vary with the 
conditions of the basic flow and types of the disturbance concerned. The smaller-order 
terms neglected in the above, however, include some important terms associated with 
the viscosity and non-parallelism of the flow. As stated in $2, the viscous term 
R-’(D‘ - a2 -p2) plays certain fundamental roles in the critical and wall layers, where 
disturbances vary very sharply. Furthermore, the author’s previous studies (Itoh 
1994a,b) have shown that the term R-’W in (4.9) (corresponding to R - l k  in the 
quoted papers) represents the most important effects of non-parallel boundary-layer 
flows and seriously affects the decaying behaviour of disturbances in the external 
region away from the wall, because the velocity component W increases in proportion 
to the distance 6 there. This is a great difference between the boundary-layer-flow 
problem discussed here and the rotating-flow problem studied in the previous sections. 
Now we wish to construct a simple system of ordinary differential equations applicable 
to all the basic-flow conditions and the disturbance modes concerned. This is done by 
retaining all the leading terms given in (5.5) and (5.7) together with the viscous and 
non-parallel terms discussed above. Then, we replace, for convenience of notation, the 
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reference velocity used so far with the local velocity QE = ( U g  + Vg)li2 of the external 
flow. Then the approximate disturbance equations are written in the form 

(D2 - a’ -,!I2) + i(w - aU-PV) --D u 
R 11 

D+P(PU’-aV’) w = 0, ( 5 . 8 ~ )  
R 1 

[{ 4 (D2 - a2 - P’) + i(w - aU- PV) 
R R 1 (D2 - a2 - P Z )  + i(aU’’+ pv”) 

(UD+U’)u = 0, (5.8b) 
2ia (1 + y2)li2 

+ R  

where R = QE S / v  is the Reynolds number based on the local velocity of the external 
flow, and the velocity components of the basic flow are given by 

Thus the present equation system is certainly applicable to the three kinds of instability 
due to viscosity, cross-flow and streamline curvature and is suitable for our purpose of 
investigating multiple stability characteristics of the attachment-line flow. 

The approximate disturbance equations given above are very similar to those used 
in Itoh (1994b), so that the boundary conditions to be imposed may be obtained 
through the procedure given there. The results are written in the approximate form 

u = w = w ’ = O  at c = O ,  ( 5 .10~)  

(5.10b) ia 

P2 

u’+plu->(w”+pIw’) = 0, 

2iap1 Uo (1 + y2)’/’ 
“ ’ ’ + ( P 1 + P 2 ) ~ ’ + P l P 2 ~ - ( 2 P l +  w,)(Pl+P,) u = 0, (5 .10~)  

w’”+(2p1+p2)w”+p1(p1+2p2) w’+pqp2w = 0 at 5 =  Ce, (5.10d) 

where p1 = -~~+(+W~+a2+P2-iwR+iaRUo+i/3RV,)1i2,  p2 = and the 
subscript 0 denotes the value at the boundary-layer edge Q. These conditions are not 
exact but can provide sufficient accuracy if the boundary-layer edge is taken large, i.e. 
Ce = 10 (Itoh 1994~) .  Together with the above boundary conditions, the homogeneous 
equations (5.8) pose an eigenvalue problem to determine the complex frequency w as 
a function of the wavenumbers a and P, the Reynolds number R and the flow 
parameter y as 

w = w(a, P, R ;  y), (5.11) 

whose real part w, denotes frequency and imaginary part wi temporal growth rate of 
the disturbance. Solution of the eigenvalue problem and determination of the critical 
points for given values of y are done with the numerical method described in 92. 

6. Multiple instabilities of the attachment-line flow 
The velocity distribution of the attachment-line flow is obtained by putting the 

pressure parameter m equal to 1 .O in the Falkner-Skan-Cooke flow. Critical Reynolds 
numbers of the cross-flow instability in this flow have been obtained in Itoh (1991), 
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FIGURE 5. Critical Reynolds numbers plotted against y. (Solid line: the new instability; dashed line: 
the cross-flow instability obtained from (5.8) ; dotted line : the cross-flow instability obtained from 
(5.8) with neglect of the curvature terms.) 
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FIGURE 6. Variations of wavenumbers and frequency of disturbances along the critical curves 

given in figure 5. (Solid line: the new mode; dashed line: the cross-flow mode.) 

where the Orr-Sommerfeld equation was used with neglect of the streamline-curvature 
terms. In the present paper, therefore, we begin with the simpler equations, ignore the 
u-terms in (5.8 b) and solve the corresponding eigenvalue problem for critical Reynolds 
numbers of the cross-flow instability in the attachment-line flow. The results are shown 
by the dotted line in figure 5,  where values of R, are plotted against the inclination y 
of external streamlines to the chordwise direction x. The critical curve has a minimum 
at y = 1.2 and rises for larger and smaller values of y. If we use (5.8) without 
modification, the critical curve for the cross-flow instability shifts to the dashed line, 
which however disappears for y less than 1.2 and instead a new critical curve is 
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FIGURE 7. Neutral stability curves for fixed values of Reynolds number at y = 2.0. (Solid line: 
R = 210; dashed line: R = 230; chain-dotted line: R = 250; PI: R = 201; P,: R = 225.) 

obtained in the whole range of y, as shown by the solid line in figure 5. The new curve 
has a similar shape and is distinctly lower than the dashed line in the range of y < 3.3, 
although the cross-flow curve gives the lowest critical values for larger values of y. 
These computations indicate that two kinds of instabilities are possible in the 
attachment-line flow. Of particular importance is that the new instability can be 
obtained from the disturbance equations (5.8) including the curvature terms in (5.8 b), 
but not from the Orr-Sommerfeld equation. This situation is very similar to the cases 
of rotating-disk flow and of downstream boundary-layer flows (Itoh 1995) and 
suggests that the new critical curve may belong to the streamline-curvature instability. 

Comparisons of wavenumbers and frequency of the critical disturbances along the 
two critical curves are shown in figure 6 ,  where we can see quite large differences 
between the solid and dashed lines, in particular for the spanwise wavenumber and the 
frequency. The cross-flow instability gives larger values of the wavenumber than those 
of the new instability, and the frequency curves show different signs of w,, which 
indicate opposite directions of propagation of the two kinds of disturbances. These 
differences in disturbance properties are very similar to the differences between the 
C-F and S-C disturbances in the Falkner-Skan-Cooke flow revealed by Itoh (1994b). 
To see the wavenumber regions of the two kinds of disturbances, we fixed the value of y 
at 2.0 and drew neutral stability curves on the wavenumber plane (01,/3) for Reynolds 
numbers slightly larger than the critical value. In figure 7, the wavenumber components 
inside each curve have positive growth rates at the corresponding Reynolds number. 
From these curves, we can imagine the rough shape of the neutral stability surface in 
the three-dimensional space with the coordinates (01, p, R) and find that the surface has 
two downward peaks; the higher one is related to the cross-flow instability, while the 
lower gives the critical Reynolds number at y = 2.0 on the solid line in figure 5. This 
feature of the neutral surface bears a close resemblance to that of the rotating-disk 
flow, for which the neutral curves are given in figure 2, showing that both the C-F and 
S-C modes appear competitively. Another comparison is made in figure 8, which 
presents amplitude and phase distributions of the two critical disturbances at y = 2.0 
on the solid and dashed lines in figure 5.  Only the velocity component in the direction 
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FIGURE 8. Amplitude and phase distributions of the velocity component in the direction of the 
external streamline of the critical disturbances at y = 2.0. (Solid line: the new mode; dashed line: the 
cross-flow mode.) 

of the external streamline is presented here, because the others are one order of 
magnitude smaller. These distributions also bear a striking resemblance to those of the 
C-F and S-C disturbances shown in Itoh (1994b). Figures 6 8  have great similarities 
to the corresponding figures presented in the previous studies on the Falkner- 
Skan-Cooke and rotating-disk flows, and therefore we may conclude that the 
critical curve denoted by the solid line in figure 5 must belong to the streamline- 
curvature instability, as deduced earlier. 

The results given in figure 5 indicate that the C-F instability gives lower critical 
Reynolds numbers than the S-C instability only for quite large values of the streamline 
inclination y .  Since there is larger inclination of streamlines in the region closer to the 
attachment line, it is interesting to see how the critical curve of the C-F instability 
behaves as y increases further, and so additional computations are shown in figure 9, 
where critical quantities are plotted against y-'. Important findings are that increase of 
the critical Reynolds number becomes saturated as y-l decreases, R, approaching a 
constant at y-l = 0, and that the wavenumber a, of the critical disturbances tends to 
zero with the decrease in y-l, so that the wavenumber vector becomes parallel to the 
attachment line. Hall, Malik & Poll (1984) have considered this particular mode of 
disturbances and succeeded in deriving exact disturbance equations of the ordinary 
differential form, which are equivalent to those obtained by putting a = 0 in our 
disturbance equations (5.8) and adding a smaller-order term -2p2R-'F'u to the left- 
hand side of (5.8a). In this particular case, the equation system becomes independent 
of the basic-flow parameter y and gives the critical values R, = 583.1, p, = 0.288 and 
we = 0.111. Comparison of these values with figure 9 shows that the critical state 
obtained by Hall et al. corresponds to the limit for y-l+ 0 of the critical curve of the 
C-F instability, which is dominant in the region very close to the attachment line. This 
conclusion is very useful for our understanding of a fundamental feature of the 
attachment-line instability. 

As seen above, the critical Reynolds number Re of the attachment-line flow is a 
function of the inclination y of the external streamlines from the chordwise direction. 
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Since U, is proportional to X and V, is constant in the flow near the leading edge of 
a circular cylinder, the ratio y = V,/U, is easily obtained for a given value of the sweep 
angle A of the cylinder as 

tanA tanA - - y=w 2x2' 
where 2 = X/x denotes the distance made dimensionless with the surface length 
from the leading edge to the trailing edge. Using this relation, we can find variations 
of Re with 2 f o r  fixed values of A ,  and the results are given for sweep angles of A = 5", 
10" and 20" in figure 10. Since the variation of the critical curve Re(y) with A comes 
only from stretching the space coordinate, the minimum value of R, stays the same 
but its location Tmin is shifted downstream considerably as the sweep angle increases. 
When the sweep angle is very small, the direction of the external streamlines varies 
from parallel to the leading edge towards the main stream direction within a very 
narrow region close to the leading edge, so that the critical Reynolds number decreases 
sharply to the minimum value, followed by a sharp increase with 2 in this range. If we 
consider the case that A is just zero, on the other hand, the basic flow reduces to the 
two-dimensional stagnation flow, whose stability characteristics have been studied by 
many researchers. Linear stability theory shows that this flow is stable for small 
disturbances of Tollmien-Schlichting waves and also of longitudinal vortices, but there 
are some reports that certain experiments have detected disturbances of the latter type 
(see, for instance, Wilson & Gladwell 1978). This discrepancy between theory and 
experiment may be explained by the present analysis for the three-dimensional flow, 
because the results suggest the possibility that a minute modification of the two- 
dimensional stagnation flow to a slightly three-dimensional flow may lead to local 
instability to longitudinal disturbances as shown in figure 10. 

Finally we consider the case of a moderately large sweep angle and investigate the 
relation between the present critical curves and those of the downstream boundary 
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FIGURE 10. Critical Reynolds numbers plotted against the chordwise distance 2 for sweep angles 
A = 5", 10" and 20". (Solid line: the streamline-curvature mode; dashed line: the cross-flow 
mode.) 
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FIGURE 11. Comparison of the critical curves for the case of A = 30". (Solid line: the streamline- 
curvature instability of the attachment-line flow; dashed line: the cross-flow instability of the 
attachment-line flow; chain-dotted line : the streamline-curvature instability of the downstream 
boundary-layer flow; dotted line: the cross-flow instability of the downstream boundary-layer flow.) 

layer. As shown in figure 11, the critical curve of the S-C instability for A = 30" has a 
minimum at 2 = 1.1 and then increases slowly. On the other hand, the critical curves 
of the downstream boundary-layer flow on a circular cylinder with the same sweep 
angle have been obtained in Itoh (1996), where the disturbance equations used are 
based on the coordinates along and normal to the external streamline and include both 
the wall and streamline curvatures, although the level of approximation is the same as 
the present equation system. Since the boundary-layer flow is approximated by 
members of the Falkner-Skan-Cooke velocity family, the critical Reynolds number 
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depends on the Falkner-Skan parameter m, which approaches to 1.0 as the distance k 
from the leading edge decreases. Comparison of the two series of computational results 
is made in figure 1 1, where the S-C and C-F critical curves, denoted by the chain-dotted 
and fine dotted lines respectively, have been obtained from extended computations of 
Itoh (1996) to smaller values of 2. We see a fairly good agreement in the qualitative 
features in the whole range of kconcerned, in spite of the different treatment of the two 
curvature terms and the pressure gradient. The previous critical curves for the two 
instabilities seem to approach the present ones as -f decreases, which seems to indicate 
that the previous method of stability calculation is applicable not only to the 
downstream boundary-layer flow but also to the upstream flow close to the leading 
edge, at least for the rough estimation of the multiple characteristics in instability of 
the flows done in the present study. 

7. Concluding remarks 
A theoretical investigation based on simple models of disturbance equations has 

been made to reveal multiple characteristics in the instability of rotating-disk flow and 
attachment-line flow, with particular attention to the possibility of the streamline- 
curvature instability, which was first predicted in a recent study on general three- 
dimensional boundary layers (Itoh 1994b). In the problem of the rotating-disk flow, 
the somewhat tricky assumption was introduced of considering a false flow where the 
curvature of the flow field can vary independently of the local Reynolds number. 
Constant thickness of the viscous layer and no vertical velocity away from the surface 
in the basic flow are of great advantage in deriving the simplest model of disturbance 
equations, which includes an explicit term for the curvature and enables us to 
determine the critical Reynolds number of the false flow as a function of the curvature 
parameter K .  In the actual flow on a rotating disk, the curvature is not independent of 
the local Reynolds number R but is related to it by R = K - ~ ,  and solutions for this 
particular case can be sought in general solutions of the above false-flow problem. For 
the problem of the attachment-line instability, on the other hand, we have considered 
the flow near the leading edge of a yawed circular cylinder, because of a practical 
interest in the relation between its instability and the cross-flow and streamline- 
curvature instabilities of the boundary-layer flow downstream. A model system of 
disturbance equations was derived through stretching the downstream coordinate near 
the leading edge and examining the fundamental balance of principal terms in the 
equations for various sweep angles of the cylinder and for different modes of 
disturbances. The resulting system consists of the simplest model mentioned above plus 
the most important non-parallel term associated with the vertical velocity in the 
boundary-layer flow and is applicable for any value of sweep angle and any mode of 
disturbances. The two equation systems used in this paper are simple modifications of 
the parallel-flow approximation with the addition of the principal curvature term and 
pose eigenvalue problems, which were solved numerically to evaluate critical Reynolds 
numbers of the flows. This simplicity is suitable for presentation of the effects of 
streamline curvature separately and for comparing multiple characteristics in the 
instability of the flows. 

Computational results for the rotating-disk problem show the existence of two 
instabilities induced by different mechanisms. Introduction of the false flow in this 
study played a fundamental role in clarifying the essential mechanisms of these 
instabilities. One of them is the well-known cross-flow instability, whose critical 
Reynolds number is affected only a little by the streamline curvature, indicating that 
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the effect of cross-flow is essential in the instability mechanism. The other instability 
is of the streamline-curvature type, because its critical Reynolds number increases 
infinitely as the curvature decreases to zero. It has also been shown from detailed 
analysis of computational results that the curvature term remains in the lowest-order 
approximation of disturbance equations and plays an essential role in this instability. 

Further stability analysis of the real flow on a rotating disk has demonstrated the 
important conclusions that the streamline-curvature instability does appear in real 
rotating-disk flow and that it is the same one that was called ‘parallel’ or ‘type-2’ 
instability in the classical studies by Lilly (1966) and Faller & Kaylor (1966). This 
instability has been analysed with more accurate formulations dealing with the real 
flow subject to the condition R = K - ~  from the beginning and including complex effects 
of centrifugal force, Coriolis force and radial variation of the basic flow, which are 
inherent in rotating flows and appear in the same smaller-order terms as R-l (Faller 
1991 ; Balakumar et al. 1991). It should also be noted that the so-called parallel or type- 
2 instability of rotating flows has been confirmed by several experiments and is well 
established in the field of atmospheric science. 

The most progressive findings of the present study are therefore that overall features 
of this classical instability are properly described by the very simple disturbance 
equations consisting of the parallel-flow approximation plus an additional term 
associated with the curved flow field and that the additional curvature term is in fact 
responsible for this mode of instability. Thus we may conclude that the present study 
of the rotating-disk flow has provided reliable evidence for existence of the streamline- 
curvature instability, which was first predicted for general three-dimensional boundary 
layers but has not yet been confirmed by experiments on flows without rotation. Since 
the fundamental activity of the curvature is not restricted to the case of rotating flows, 
it is quite natural that the boundary layer on a swept wing is sensitive to the same type 
of instability as the classical instability discussed above. 

Computational results for the attachment-line problem show that the streamline- 
curvature instability is very likely in the flow near the leading edge of a yawed circular 
cylinder. In this problem, the critical Reynolds number is determined as a function of 
the basic-flow parameter y only, which represents the local angle of external 
streamlines to the chordwise direction normal to the attachment line and is closely 
related to the curvature of external streamlines. Since y is a known function of the 
surface distance 2 from the leading edge and the sweep angle A of the cylinder, we can 
draw the critical curves on the (8, R)-plane for various values of A.  For each value of 
the sweep angle, two kinds of critical curves appear corresponding to the cross-flow 
and streamline-curvature instabilities, and the S-C critical curve is lower than the C-F 
one in most of the range of 8 concerned, except for a very narrow region close to the 
attachment line. This curve has a minimum at a position kmtn and rises very sharply 
as 8 decreases towards the leading edge but more moderately for larger values of 
than kmin. For larger values of the surface distance, however, the velocity distribution 
deviates from that of the attachment-line flow, and therefore the present curve should 
be replaced with the critical curve for the S-C instability of the downstream boundary 
layer, which was obtained in the author’s previous study on multiple instabilities of 
three-dimensional boundary layers (Itoh 1996). 

Thus we have overall view of the critical conditions along the windward surface of 
the cylinder. A very narrow region close to the attachment line is governed by the cross- 
flow instability, but the streamline-curvature instability determines the lowest values of 
the critical Reynolds number in a much wider region from just downstream of the 
narrow attachment-line region to a certain station in the downstream boundary layer, 
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behind which the lowest critical values are again determined by the cross-flow 
instability. Another interesting conclusion is drawn from the fact that the minimum 
value of the critical curve is held fixed during variation of the sweep angle. As the sweep 
angle A decreases to zero, the location ymin of the minimum critical Reynolds number 
moves towards the leading edge and the distance between the left- and right-hand 
branches of the critical curve becomes smaller and smaller, resulting in a very sharp fall 
and rise of the critical value within a narrow range of 2 around f m i n .  This indicates 
that stability characteristics of the three-dimensional attachment-line flow in the limit 
of small sweep angle differ radically from those of the two-dimensional stagnation 
flow, which is known to be stable to any kind of small disturbance. 

The above results have been obtained from solution of the approximate disturbance 
equations, which were derived without mathematical justification, although most 
attention was paid to keeping the most important terms in the equations. A more 
rigorous analysis of the attachment-line instability has been done by Hall et al. (1984), 
who considered a limited disturbance with wavenumber vector parallel to the 
attachment line. In that case, we can derive an exact system of ordinary differential 
equations, which are however found to be independent of the streamline inclination y. 
Comparative examination indicates that the critical point obtained by Hall et al. 
corresponds to the limit for y+co of the present critical curve of the cross-flow 
instability appearing in the region very close to the leading edge, but is not relevant to 
the streamline-curvature instability discussed above, because the main properties of 
their disturbance are similar to those of Poll’s (1979) solutions of the Orr-Sommerfeld 
equation. To remove such restrictions, the present study has adopted an approximate 
equation system applicable to more general modes of disturbances, at the expense of 
mathematical rigorousness in the derivation of the disturbance equations. This has led 
us to success in revealing the possibility of two kinds of instabilities in the flow near the 
leading edge and in showing the principal effects of the angle of wing sweep and the 
curvature of the external streamlines. Such an approximate approach is meaningful for 
our understanding of fundamental aspects of physical phenomena and for providing 
approximate information useful for more rigorous analyses of the phenomena, for 
instance, by numerical simulations of the Navier-Stokes equations. It may be expected 
that the above results will be confirmed by numerical computations in the near future. 

Since the streamline-curvature instability of general boundary-layer flows has not 
yet been detected in experiments, we have to look forward to future observations for 
more details of this new instability. The most important point to be pursued in 
experiments is probably the role of the streamline-curvature instability in the 
transitional process of three-dimensional boundary layers. It has been commonly 
believed that the transition from laminar to turbulence in three-dimensional flows is 
initiated by the cross-flow instability of the inflexion-point type, but the mechanism of 
initial development, namely the receptivity, of this kind of disturbances has not yet 
been clarified sufficiently. The streamline-curvature disturbances of the centrifugal 
type can grow at a much lower Reynolds number and bear a strong resemblance to 
the cross-flow disturbances, because their wavenumber vectors are both nearly 
perpendicular to external streamlines, like longitudinal vortices. It is, therefore, very 
likely that an interaction between the two kinds of disturbances is concerned in initial 
stage of transition. In association with this problem, it is also noteworthy that the 
centrifugal instability is very sensitive to external disturbances, as pointed out by Faller 
(1991) in a discussion of experimental results on rotating flows. Further investigations 
of the streamline-curvature instability seem to be necessary for a marked advance 
in the explanation of the receptivity process in three-dimensional boundary layers. 
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